The RBF4AERO project is properly conceived to tackle all the aspects related to aircraft numerical design and optimization by making the CFD model parametric through an innovative shape optimization tool based on a high-performance meshless morphing technique. This technique is founded on Radial Basis Functions (RBFs) theoretical approach which offers a number of distinct advantages over the more traditional optimization approaches. This new optimization methodology will guarantee very fast and highly detailed CFD optimization analyses such to significantly reduce costs of optimization of aircraft aerodynamics without losing accuracy or domain extent.

The final goal of the Project is the development of the RBF4AERO Benchmark Technology, namely a dedicated numerical platform and strategy capable to allow aeronautical design engineers to build up the novel optimization environment by using their own numerical models and computing platforms, and achieve the results of multi-objective and multi-disciplinary optimization studies in a dramatically shorter time with respect to current practices, and with no need to face with typical limiting trade-off constraints.

Besides, the RBF4AERO numerical platform enables to solve other relevant aircraft design studies such as FSI and icing growth in an original fashion, and proposes a challenging CFD optimization technique that foresees the adjoint-morphing coupling.